

	

	

	

Pentest	Report	–	Pagekit	01-2017	

https://github.com/pagekit/	

SecureLayer7	
	

	

Index	

• Intro	
• Scope	
• Identified	Vulnerabilities	
• Conclusion	

	 	

	

Intro	

“Pagekit	 is	 a	 modular	 and	 lightweight	 content	 management	 system.	 It	 gives	 the	 tools	 to	 create	
websites.”	-		As	per	Pagekit	website	

This	 penetration	 test	 was	 carried	 out	 by	 Securelayer7	 team.	 It	 was	 carried	 out	 for	 4	 days.	 The	 test	
identified	one	critical	vulnerability	which	leads	to	vertical/horizontal	authentication	bypass.	 It	was	also	
found	 that	 Pagekit	 users	 swiftmailer	 version	 5.4.1	 for	 sending	mails	which	has	 been	 recently	 hit	with	
remote	 code	 execution	 vulnerability.	 In	 addition	 to	 that,	 4	minor	 and	 1	medium	 vulnerabilities	were	
discovered	that	require	to	be	addressed.	

Scope	

• Source	code	available	on	Github	(https://github.com/pagekit/)	
• Locally	hosted	web	application	

Testing	environment			

• Latest	Kali	Linux	64	bit	2016.2	
• LAMP	

Identified	Vulnerabilities	

The	following	sections	list	vulnerabilities.	The	findings	are	listed	in	chronological	order	and	not	by	their	
degree	 of	 severity.	 The	 severity	 is	 given	 in	 brackets	 following	 the	 title	 heading.	 Each	 bug	 is	 given	 a	
unique	identifier	for	the	purpose	of	future	reference	and	follow-up.	

SL7_PGKT_01:	Vertical/Horizontal	Authentication	Bypass	(Critical)	

Description:	A	vulnerable	end	point	reveals	the	password	reset	links	clicked	by	all	the	users	of	Pagekit.	
This	means	whoever	 clicks	 on	 those	 links	will	 have	 their	 accounts	 compromised.	No	 privilege	 level	 is	
required	 to	 see	 that	 end	 point.	 It	 is	 public.	 So,	 an	 unauthenticated	 attacker	 can	 perform	 complete	
account	 takeover.	 Note	 that	 the	 password	 reset	 link	 also	 has	 the	 username	mentioned	 in	 it.	 So,	 an	
account	 takeover	 can	 be	 performed	 because	 the	 attacker	 knows	 both	 the	 password	 and	 username	
(password	was	changed	by	him	and	the	username	is	displayed	in	the	reset	link).	

The	vulnerable	end	point	is:	/pagekit/index.php/_debugbar/<the	secret	code	here>	

The	‘secret	code’	is	nothing	but	the	value	of	debugbar	in	‘<script>var	$debugbar	=	
{"current":"60b4b0f6a3fcdf3bff05668401c2ec12c75ee152"};</script>’	js	in	the	HTML	source	of	the	login	page	.	

	

	

PoC:	

1. Along	with	this	report,	an	exploit	developed	in	Ruby	is	attached.		
2. Execute	it	using	command	prompt.		
3. Login	as	any	user	and	reset	your	password	and	click	on	your	password	reset	link.	
4. Go	to	the	command	prompt	and	observe	that	the	executing	script	captures	the	password	reset	

link.	

Mitigation:	When	login	page	is	loaded,	the	long	cryptographic	code	is	revealed	in	client	side	JavaScript.	
Do	not	disclose	it	there.	If	it	is	not	displayed,	then	no	one	can	use	it	to	find	the	reset	links.	It	is	very	long	
so	brute	forcing	is	not	possible,	so	this	will	make	it	safe.	

	

SL7_PGKT_02:	Server	side	information	disclosure	(Medium)	

Description:	The	application	has	an	endpoint	that	reveals	following	information:		

• Some	database	queries	
• Server	information	including	computer	name,	PHP	version,	SQL	server	name	and	version	
• Full	path	of	the	web	application	

The	end	point	is	the	same	as	the	one	mentioned	in	SL7_PGKT_05.	

PoC:	

	

	
A	file	named	informationdisclosure.json	is	attached	with	this	report.	Please	view	it.	

Mitigation:	The	mitigation	is	same	as	that	of	SL7_PGKT_01.	

	

SL7_PGKT_03:	Misconfiguration	.htaccess	(Low)	

Description:	 During	 the	 penetration	 testing	 we	 have	 used	 the	 LAMP	 to	 test	 the	 application	 and	 we	
found	that	the	.htaccess	does	not	restrict	users	to	access	the	file	phpunit.xml.dst.	 It	has	sensitive	data	
such	as	 temporary	usernames	and	passwords	of	DB,	SMTP	and	FTP.	Although,	 the	credentials	are	not	
used	 by	 the	 application,	 but	 they	 can	 be	 used	 for	 testing	 purpose	 or	 in	 future	 if	 there	 is	 any	
enhancement	in	the	application.	This	is	the	reason,	this	vulnerability	is	reported	with	low	severity.	It	can	
also	be	treated	as	informational.	

PoC:	Request	the	file	in	browser	and	observe	that	it	is	publicly	available	

http://yourpagekitsite.com/phpunit.xml.dst	

Mitigation:		

1) For	apache	server.	Please	add	‘|phpunit.xml.dist’	in	line	2	of	.htaccess	file.	After	this	is	done,	any	
user	who	requests	it	will	get	a	forbidden	error.	

2) For	Nginx	 server	 –	 the	 phpunit.xml.dist	 used	 for	 the	 internal	 purposes,	 so	 you	 can	provide	 IP	
based	access	to	the	user.		
	

SL7_PGKT_04:	Weak	Password	Policy	(Low)	

When	a	new	user	is	added,	the	application	does	not	enforce	a	password	policy	resulting	in	users	created	
having	weak	passwords.	This	is	not	a	good	practice.	Although	it	is	not	a	major	vulnerability,	but	letting	
users	use	weak	passwords	make	the	job	of	an	attacker	easier	because	the	passwords	are	then	very	easy	
to	guess	and	cracked	with	less	efforts.	

PoC:		

1. Login	as	admin	and	go	to	create	new	user	page	(link:	
http://127.0.0.1/pagekit/index.php/admin/user/edit)	

2. Enter	valid	details	in	all	the	fields	
3. Enter	password	as	test,	1234.	
4. Click	on	SAVE	
5. Observe	that	the	application	accepts	it	

Mitigation:	Implement	server	side	check	that	validate	whether	entered	password	is	of	min	6	characters	
or	not.	In	the	following	function:	validate()	(line	number	220-260)	in	

	
pagekit/app/system/modules/user/src/models/user.php	.	It	is	also	recommended	to	user	to	change	the	
password	change	password	on	the	first	login.		

	

SL7_PGKT_05:	Sensitive	Information	leakage	via	referrer	header	(Low)	

Description:	Password	reset	security	token	gets	leaked	to	third	party	websites	via	referrer	header.	The	
homepage	has	a	footer	section	which	has	links	to	third	party	websites	such	as	github,	twitter.	If	a	user	
clicks	on	any	of	the	links	then	the	URL	of	the	current	page	gets	sent	to	them	via	referrer	header	and	will	
be	seen	in	 logs	of	the	web	server	of	those	websites.	Although	you	can	trust	those	sites,	but	 it	 is	not	a	
good	practice	to	include	security	tokens	in	referrer	header	while	navigating	to	third	party	websites.	

PoC:	

GET	/pagekit	HTTP/1.1	
Host:	twitter.com	
User-Agent:	Mozilla/5.0	(Windows	NT	6.3;	WOW64;	rv:50.0)	Gecko/20100101	Firefox/50.0	
Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	
Accept-Language:	en-US,en;q=0.5	
Accept-Encoding:	gzip,	deflate,	br	
Referer:	
http://127.0.0.1/pagekit/index.php/user/resetpassword/confirm?user=saurabh&key=51mwy/ethCt2SqrTFwKarkk90MMzZkWC	
Connection:	keep-alive	
Upgrade-Insecure-Requests:	1	

	

Mitigation:	In	order	to	resolve	this,	whenever	the	password	reset	link	gets	loaded	have	the	following	in	
code	between	<head>	tags	of	 the	html:	<meta	name="referrer"	content="never"	/>	This	will	not	send	
referrer	headers	to	third	party	websites.	

	

SL7_PGKT_06:	Plain	text	storage	of	credentials	(Low)	

The	password	for	SMTP	connection	is	stored	in	plain	text	in	the	database.	If	some	other	vulnerability	like	
SQL	Injection	causes	the	DB	to	be	compromised,	then	attacker	will	obtain	SMTP	credentials.		

PoC:		

1. In	order	to	reproduce	this	issue,	set	smtp	settings	using	admin	panel.		
2. Go	to	DB	and	execute	the	following	query:	SELECT	*	FROM	`pk_system_config`	where	name	like	

'%mail%'	

	

	
	

Mitigation:	Encrypt	the	password	using	a	script	and	then	store	it	in	DB.	At	the	time	of	sending	email,	
decrypt	it	and	then	send	to	the	SMTP	server.	

	

	

SL7_PGKT_07:	SWIFTMAILER	Remote	Code	Execution	(Low)	

Description:	Pagekit	uses	swiftmailer	version	5.4.1	for	sending	mails	to	users.	All	swiftmailer	versions	<=	
5.4.5	 are	 vulnerable	 to	 remote	 code	 execution	 (CVE-2016-10074).	 Note	 that	 in	 order	 to	 exploit	 this	
vulnerability,	an	attacker	has	to	enter	payload	in	the	‘From’	address	of	the	mails.	But	the	current	Pagekit	
application	 does	 not	 have	 any	 functionality	 that	 lets	 users	 do	 that	 (for	 e.g.	 contact	 us).	 But	 it	 is	
recommended	that	swiftmailer	library	should	be	upgraded	to	latest	patched	version	because	there	is	a	
chance	that	a	contact	us	page	can	be	developed	by	Pagekit	team	in	the	future	as	an	enhancement.	

PoC:	Due	to	no	functionality	that	lets	user	modify	‘From’	field	of	an	email,	a	PoC	could	not	be	made.		

Mitigation:	Upgrade	swiftmailer	to	latest	patched	version	as	soon	as	the	vendor	patches	it.	

	

Conclusion	

One	authentication	bypass	vulnerability	has	been	found	which	should	be	the	point	of	concern.	The	fact	
that	this	can	be	remote	exploited	by	an	unauthenticated	user	makes	this	a	severe	impact	issue.		Another	
thing	to	be	concern	of	 is	the	swiftmailer	 library	version	which	 is	vulnerable	to	remote	code	execution.	
However,	 no	 functionality	 that	 lets	 users	 change	 the	 ‘From’	mail	 address	makes	 this	 very	 hard	 to	 be	
exploited.	It	should	be	noted	that	the	problems	are	all	implementation	flaws	and	not	design	flaws.	The	
findings	are	not	very	hard	to	fix.	

