2 WHITE PAPER

A deep dive into
mobile android
apps privacy
security controls

Penetration testing report and outcomes of Its mobile apps protection

SecurelLayer/

Time and Again, Securing you

Contents

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 2

o ~N oo O A~ W

Executive Summary
Scope and Details
Test Methodology
Observations
Conclusion

Appendix

Executive Summary

In the digital landscape, Android
mobile applications are increasingly
handling sensitive and personally
identifiable information, making the
implementation of robust privacy
security controls a critical
imperative.

This necessitates a focused approach towards
mitigating a spectrum of vulnerabilities, ranging from
unauthorized screen overlays that mislead users, to
keyloggers surreptitiously recording keystrokes. Risks
inherent in copy/paste functionality and screen
mirroring also demand attention, as they pose threats
to data confidentiality.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 3

Equally paramount is the protection against advanced
rooting techniques like Magisk, and the prevention of
remote desktop control attacks and accessibility
malware, which exploit system features for nefarious
purposes. Robust memory protection strategies are
essential to thwart unauthorized data access,
emphasizing the multifaceted nature of privacy
challenges in Android environments. Each vulnerability
presents a distinct avenue for potential privacy
breaches, underlining the urgency for comprehensive
security controls in Android applications.

SecureLayer7, which is a Austin, Texas based cybersecurity
service and product company, reviewed sample Android apps,
equipped with Appdome's suite of mobile app privacy
protections. This report meticulously documents the findings
from the review, focusing on the efficacy and robustness of the
privacy control mechanisms within the evaluated sample

apps.

h‘,‘_\.'l.'l.i
L

panuiunRiil

Scope and Details

The principal objective of this undertaking was a
meticulous scrutiny of the privacy control mechanisms
integrated within a selected Android application, in
conjunction with the Appdome privacy control
implementations. This was a time-boxed investigation
of Appdome’s mobile apps privacy controls.

SecureLayer7 employed the Fusion Appdome control
panel for the purpose of uploading and compiling the
Android app’s executable file, replete with privacy
controls. This process was followed by an in-depth
investigation into the potential avenues for
circumventing the protective measures established
within the sample Android applications. The
investigation's central focus was on identifying and
overcoming the mobile app privacy protections
provided by Appdome.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 4

©O6060660606066

Overlay
Keylogger
Copy/Paste
Screen Mirroring
Anti-Root/Magisk
Anti-RDC

Memory Protection

Test Methodology

In this section, SecureLayer7's methodology is
meticulously detailed, describing the approach taken in
examining the various components of the app's privacy
controls. The documentation provides insight into the
thoroughness of the testing coverage and delves into

how each aspect of the privacy controls was scrutinized.

Additionally, it offers a deeper analysis of specific areas,
particularly focusing on those aspects where significant
protection bypasses were not initially evident.

The initial phase of the assignment involved a detailed review
of the app's scope, followed by the compilation of the sample
Android app's executable file utilizing the Appdome’s privacy
controls. A key feature of Appdome, highlighted during this
process, is its no-code platform capability, which streamlines
and simplifies the deployment of such security measures. The
SecurelLayer7 team adeptly conducted a side-by-side
comparative analysis of various compiled files from the
application. This process involved reversing the Android app
to investigate the privacy control gaps by understanding the
app's privacy and security architecture.

The SecurelLayer7 team commenced testing for privacy
protection bypasses with an emphasis on Anti-App Screen
Sharing.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 5

The approach included diverse techniques, extending beyond
third-party tools to in-depth code analysis, usage of custom
Frida scripts, and other runtime modifications. Initially, the
open-source tool scrcpy was employed for screen mirroring,
which successfully mirrored the device's screen but displayed
a black screen for the protected app. Attempts to bypass this
via different video encoding formats in scrcpy and error flag
analysis did not yield successful bypasses.

Subsequently, SecureLayer7 employed various tools and
frameworks, including LSPOSED and Frida scripts, to modify
runtime function values responsible for screen sharing
protection. By disabling the FLAG_SECURE using LSPOSED, it
was observed that Appdome's Anti-App Screen Sharing
protection was bypassed, allowing screen mirroring despite
the implemented protection. Conversely, users must activate
additional features to enhance protection against screen
sharing vulnerabilities.

In the assessment of Copy/Paste protection bypass,
Securelayer7 utilized a multi-faceted approach, incorporating
code level analysis and runtime manipulation techniques.
Theinitial test using a browser with Copy/Paste Prevention
enabled revealed effective restriction messages. Subsequent
static analysis and searches within the codebase for related
strings yielded no significant findings.

Despite employing tools like JADX-GUI for decompiling and
analyzing the source code, obfuscation levels hindered
successful de-obfuscation. Additionally, efforts to locate
encryption keys, as suggested in Appdome's documentation
for encrypted clipboard data, were fruitless. Advanced
methods like using ADB for clipboard service analysis and
employing Silent Clipboard Reader also only revealed
encrypted data, underscoring the robustness of the
implemented privacy feature.

In evaluating the Block App Overlay Attacks protection,
Securelayer7 adopted a multifaceted approach, involving
code-level analysis and runtime manipulation techniques.
Tests using Tapjacker and Tapjacking-ExportedActivity
applications demonstrated effective detection of overlays by
the and Tapjacking-ExportedActivity applications
demonstrated effective detection of overlays by the protected
app, resulting in self-closure. Despite static code analysis and
custom Frida script attempts, obfuscation challenges hindered
deeper insights.

Additionally, tests with an application designed to check
FLAG_WINDOW_IS_PARTIALLY_OBSCURED flags revealed
specific vulnerabilities in partially obscured scenarios.

Test Methodology

In assessing the Anti Remote Desktop Control (RDC)
protection, SecureLayer7 applied a blend of techniques
including code analysis and runtime manipulation. Tests with
TeamViewer indicated effective RDC detection by the
protected app, displaying a specific warning. Subsequent code
analysis did not reveal direct references to TeamViewer or
similar apps. Further tests with RustDesk, which uses
Accessibility services, initially bypassed the protection but
were thwarted by enabling 'Block Suspicious Accessibility
Services, confirming the effectiveness of this additional
security layer.

In the keylogging protection bypass assessment, SecureLayer7
employed a methodology encompassing code analysis and
runtime techniques. Using LokiBoard, a keylogger, revealed
effective detection by the protected app, which displayed a
specific warning against untrusted keyboards. Further analysis
did not find the exact toast message in the codebase.
Attempts to input via LokiBoard were blocked, and no
evidence of captured keystrokes was found in the expected
storage directory, indicating robust keylogging protection.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 6

In assessing Memory Protection, SecureLayer7 applied a
methodology that included code-level analysis and other
techniques. The use of the open-source tool MobSF, a security
assessment framework, facilitated the static analysis of the
protected application. The analysis revealed robust memory
protection mechanisms, evidenced by the presence of Stack
Canary and Full RELRO in all shared libraries. Further search
for hardcoded keys or secrets within the decompiled source
code yielded no results, indicating a lack of easily identifiable
vulnerabilities in data encryption.

In the Anti-Root bypass assessment, SecurelLayer7's
methodology included code analysis and runtime techniques.
The BrowserAndroid application's Root Detection was tested,
revealing a toast notification on rooted devices. Static analysis
with Jadx-gui4 did not find related strings in the code.
Attempts using Objection and Frida gadget to patch the app
resulted in it not progressing past the icon screen. Additional
tests for emulator detection bypass using various tools and
scripts were unsuccessful due to strong obfuscation in the
app's code, highlighting the robustness of the Anti-Root
protection.

Observations

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 7

Appdome Overlay Protection
Bypass in Android Sample App

Appdome Keyloggers Protection
Bypass in Android Sample App

Appdome Screen Mirroring
Safeguards Bypass in Android
Sample App

Appdome Anti-Root Magisk
Protection Bypass in Android
Sample App

Explored the effectiveness of Appdome's Overlay Protection in an
Android app, revealing potential bypass methods through advanced
testing techniques.

It adds additional layer of protection using Appdome fusion panel
block suspicious accessibility services for workaround

Assessed the resilience of Appdome's Keylogger Protection in an
Android environment, identifying possible circumvention strategies.

Analysed the robustness of Appdome's Screen Mirroring Protection,
testing for vulnerabilities that could allow unauthorised mirroring.

Investigated the strength of Appdome's Anti-Root Magisk
Protection, focusing on potential bypass methods in a
rooted Android scenario.

Not Bypassed

Not Bypassed

Not Bypassed

Not Bypassed

Testcase

Appdome Remote Desktop
Control (RDC) Protection
Bypass in Android App

Appdome Accessibility Mal-
ware Protection Bypass in
Android App

Appdome Memory Protection
Protection Bypass in Android

App

Examined the effectiveness of Appdome's RDC Protection against
remote access attempts, identifying possible loopholes.

It adds additional layer of protection using Appdome fusion panel
enable detecting hooking framework for workaround

Tested the capability of Appdome's Accessibility Malware Protec-
tion to withstand sophisticated malware attacks exploiting acces-
sibility features.

Investigated data within the RAM, especially while the app is active-
ly in use, ensuring that sensitive information remains secure from
unauthorized access or manipulation.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 8

It adds additional
layer of protection
using

Not Bypassed

Not Bypassed

Conclusion

In conclusion, SecurelLayer?7's
assessment of Appdome's privacy
protections in an Android
environment yielded mixed results.
While the majority of protections,
such as Keylogger, Anti-Root
Magisk, Accessibility Malware, and
Memory Protection, were not
bypassed, indicating their
effectiveness, vulnerabilities were
identified in the Remote Desktop
Control (RDC) and Screen Mirroring
protections.

Securelayer | White Paper | Penetration Testing Technical Report | Page 9

These findings suggest that while Appdome's
mechanisms are robust against common attacks and
effectively hinder advanced analysis, there are still

areas that could be exploited by determined attackers.

Despite this, the time and resources required to fully
bypass these protections are significant, making them
sufficient for deterring most threat models. This level
of security demonstrates Appdome's commitment to
thwarting common bypass methods and underscores
the need for continuous enhancement of security
measures.

Appendix

Attack Narrative

This document delineates the methodologies employed in
circumventing Appdome's privacy controls within a sample
app, with the objective of extracting sensitive data.

The purpose was to gauge the effectiveness of Appdome's
protections against common attack strategies and to furnish
the Appdome team with insights into potential bypasses.

The following sections detail the scope and extent of the
testing coverage achieved. It elaborates on the methodologies
applied in scrutinizing different components under the
purview of Appdome's Privacy Protection bypass.

In reverse engineering endeavors, it's crucial to establish clear
objectives. Given the impracticality of dissecting every
function in an application, the focus is directed towards
pivotal areas linked to root detection. This involves strategic
instrumentation and investigation into segments that are
likely integral to the targeted functionalities.

The examination began with the intent to identify and bypass
the Anti-App Screen Sharing protection. This involved a
multifaceted approach, not just limited to the usage of
third-party tools and hardware but also including an in-depth
analysis of base code level changes.

Securelayer?7 | White Paper | Penetration Testing Technical Report | Page 10

Custom Frida scripts and various other scripts were developed
and employed to facilitate runtime alterations and challenge
the existing privacy protection mechanisms.

The initial phase of testing utilized "scrcpy", an open-source
utility tool designed for screen sharing of Android devices
connected to a computer with USB debugging enabled. Upon
execution, SecureLayer7 noted that while "scrcpy" mirrored
the Android device as intended, it encountered a significant
limitation when applied to the app with Anti-App Screen
Sharing protection, resulting in a blank black screen. Efforts
to circumvent this protection included experimenting with
different video encoding formats within "scrcpy". Despite
these attempts, the protection remained effective, showing
no signs of being compromised.

Further investigative measures involved re-launching "scrcpy”
with an emphasis on error detection, using flags like ERROR to
analyze if any specific errors were generated when initiating
the privacy-protected application. However, this approach
did not yield any notable errors. Similar observations were
recorded when deploying other flags, such as WARN,
indicating the robustness of the protection against these
testing methods.

Code Snippet 1: Monitoring filesystem access

Figure #1: Bypassing using scrcpy open-source tool

Figure #2: Bypassing using scrcpy open-source tool with verbosity flag

Appendix

Subsequently, the team employed ApowerMirror, another
third-party application for screen sharing. This tool, akin to

scrcpy, successfully mirrored screens of standard applications.

However, it encountered a similar limitation with the Anti-App
Screen Sharing protected application, displaying only a black
screen. This further affirmed the effectiveness of the
Appdome's screen sharing privacy protection in safeguarding
against external screen mirroring attempts.

[
LY

®
i
2 B
-

i3 =
b =

Figure #3: Bypassing using 3rd party screen mirroring tool ApowerMirror

Recognizing the necessity to delve deeper, SecureLayer7
shifted focus to dissecting the custom code within the
Appdome application. The objective was to pinpoint specific
functions and classes responsible for the Anti-App Screen
Sharing protection.

Securelayer?7 | White Paper | Penetration Testing Technical Report | Page 11

For this purpose, SecurelLayer7 harnessed open-source
utilities APKTOOL and JADX-GUI. APKTOOL was instrumental
in decompiling the zipped APK, facilitating the analysis of the
embedded custom code. Complementing this, the meld tool
was utilized to execute a diff operation, enabling an effective
comparison across various code files.

Custom code implemented by
Appdome

Figure #4: Custom code within the application visible after decompiling the APK

The analysis using apktool, Jadx-gui, and meld involved a
comparative study between two APK versions: one without
Anti-App Screen protection (APK-1) and the other with the
protection implemented (APK-2). This comparison revealed
that upon implementing the Anti-App Screen protection,
Appdome introduces a custom, obfuscated Java code,
characterized by alpha-numeric filenames and function
names like rlad1b027. An example of this can be seen

in the AndroidManifest.xml file, which illustrates one of many
instances where Appdome employs custom code to prevent
app screen sharing.

ches
11111

=
X, core, app. CoreConpaneniFac tory”
a_swtraction_rules”
Laackuprontent="geel/backup rules” + +* backup rules®

rl="@stringfapn_namre™ androi 1
ind” android: suppartsRtl-"true” B

ntent.aciivn LN ¢
font.category. | MUKCHER® {3

ission android:name="android. pernission. INTERMET" >

Before implemetion of Anti-Screen After implemetion of Anti-Screen
Sharing protection Sharing protection

Figure #5: Diff of AndroidManifest.xml with and without Appdome’s Privacy Protection

Hracitadnanali

o33l amali
abd Ifdedasmall
welfasil?b.smal
F334780 14 smali
*ebadiasag
Y5dSDE S s mak
¥ N ESoEdIEIT 4240050 smadl
¥ 1b5ofdS By bbl15e2 smald
¥ T EGosdd small
Fe020215ch
20221 Fchsmall
B niiaedTH
uThIedBarsiall

LR R

Rilsyoutamah —=
Rsmnl

Figure #6: Diff of AndroidManifest.xml with and without Appdome’s Privacy Protection

Appendix

In their pursuit to identify the specific class and function
responsible for the Anti-App Screen protection, SecurelLayer7
embarked on an in-depth code analysis. The presence of
obfuscated Java code added a significant challenge. Efforts
were made to de-obfuscate this code using multiple
open-source tools, including JDO, Java-deobfuscate, and
Java-deobfuscate-gui. Despite these attempts, the
obfuscation proved resilient, as none of the tools were
successful in translating the obfuscated Java code into a plain
text, human-readable format, highlighting the complexity and
robustness of Appdome's code protection mechanisms.

uy [aed Dellnfuscator woh

Figure #7: Obfuscated Code from Protection

Progressing further in the analysis, SecureLayer7 employed an
array of tools and frameworks, including LSPOSED and various
Frida scripts, tailored to modify runtime function values
associated with screen sharing protection.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 12

This technique aimed to potentially bypass these protections.
The initial tests using LSPOSED to disable the FLAG_SECURE
setting revealed a vulnerability in Appdome's Anti-App Screen
Sharing protection, allowing screen mirroring despite the
protection being active. This finding underscores the need

for continual enhancements in security measures to address
evolving bypass techniques.

Figure #8: Black screen before enabling the LSPOSED's FLAG_SECURE module

When LSPOSED's FLAG_SECURE is activated, it results in the
bypassing of the protection. However, the Appdome team
suggests an additional security layer: blocking suspicious
accessibility services during the app's compilation in the
Appdome fusion panel. This recommendation indicates an
approach for reinforcing the app's defense mechanisms
against such bypass techniques.

Figure #9: Protection bypassed after enabling the LSPOSED's FLAG_SECURE module

In the assessment of the Copy/Paste Prevention feature,
SecurelLayerT utilized a comprehensive methodology
encompassing both code level analysis and runtime
manipulation. This approach involved comparing the
application's code before and after the implementation of
Copy/Paste Prevention to identify any changes or newly
implemented security flags.

The testing began with the utilization of a Browser Android
application in which Copy/Paste Prevention was enabled.
Upon launching the app and attempting to copy the text 'test
entered into the URL address field, it was observed that the
clipboard displayed a message indicating the prevention of
copying and pasting from the app. This initial test
demonstrated the effective functioning of the Copy/Paste
Prevention feature.

Appendix

To further understand the underlying mechanisms, the team
conducted static analysis, searching for the specific string
displayed by the clipboard throughout the application's code
base. However, this analysis did not yield matching results,
suggesting the complexity and effectiveness of the
implemented Copy/Paste Prevention measures.

R " EmOmMm:>

Figure #10: Looking for Copied Text

In the pursuit of identifying the functions and classes behind
the Copy/Paste Prevention feature, SecureLayer7 employed
JADX-GUI for decompiling the APK to analyze the source code.
Despite this effort, the high level of obfuscation in the code
posed a significant challenge. Subsequent attempts using vari-
ous open-source tools like JDO and Java-deobfuscate also

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 13

proved unfruitful, as these tools either malfunctioned or were
incapable of de-obfuscating the complex code structure,
hindering further in-depth analysis of the underlying
mechanisms.

Custom code implemented by
Appdome

Figure #11: Custom code within the application visible after decompiling the APK

In line with Appdome's documentation on Copy/Paste
protection, the team explored the possibility of data
encryption during runtime, especially focusing on scenarios
where copied data gets encrypted. The objective was to locate
any encryption keys within the app's source code that might
be used for encrypting and decrypting the copied data.
Despite thorough analysis, this search did not result in the
discovery of any encryption key references in the code.

Figure #11: Identifying the encryption keys within the source code of the decompiled APK

Utilizing ADB, the team gained shell access to further
investigate the clipboard service's functionality. This allowed
for an examination of the clipboard service's contents,
revealing user and application IDs, along with the process
name. An attempt was made to dump the clipboard service
data while having superuser access. Despite this, the analysis
did not reveal any copied text in the dumped data, indicating
the effectiveness of the copy/paste protection in securing
clipboard contents.

Appendix

In assessing the Block App Overlay Attacks protection, Secure-
Layer7 employed a comprehensive approach, which included
code-level analysis, observation of differences, and other runt-
ime manipulation techniques. The testing utilized the Brows-
erAndroid application. An open-source Android application
called Tapjacker, used for demonstrating Android tapjacking
attacks, was a key tool in this assessment.

ATE SETTINGS

T - The spp prowdtier has x

) o — : Contents copied to the
JHBOEEBEDEL LT HE i PR e Clipboard

alwie r tiyluilop 112345678890 With Tapjacker, the user selects the application package and
RPTPEN T R PIrRrers activity to display an overlay screen. When Tapjacker was used
N - B aooeEnnn on the BrowserAndroid app with Appdome’s overlay protec-
— _OEEU SR tion enabled (com.appdome.browserandroidoverlay and its
| MainActivity), it triggered a protective response. The app dis-
Figure #13: bypass using Silent Clipboard Reader -1 played a toast message indicating the detection of screen
overlay usage and subsequently closed, demonstrating the

In the continuation of the assessment, SecurelLayer7 utilized effectiveness of Appdome's overlay attack protection.
an open-source APK named Silent Clipboard Reader, designed

to replicate and display clipboard data. The observation
revealed that even with this tool, the copied data from the
clipboard was in an encrypted format. This finding further
underscores the effectiveness of the copy/paste protection in
safeguarding data against unauthorized access or replication.

Figure #12: Extracting the clipboard contents via ADB

B ShLA325F = (=] ¥

Silent Clipboard Reader Choose application package:

. com.appdome browserandroidove. =
—— The app pravider has

chosen to prevent copying and

pasting from this app. o Encrypted string data
igre1/geP18x1YxP1STrBOhE1pR]

Exported activity:

com.appdome.browserandroide
Wtilizing TapJlacker

Overlay color:

Delay (seconds); 10

DEMO)|

[Show logo

PASTE

) source

READ MORE

Code Snippet 1: Monitoring filesystem access Figure #14: bypass using Silent Clipboard Reader -2 Figure #15: bypassing using TapJacker tool -1

Securelayer? | White Paper | Penetration Testing Technical Report | Page 14

Appendix

@ o 8] 2 &

T2 3456)7]8)192]0

qiw elritiylulifolp

slalflaln]ile]

G Z x ¢ v b n m &

Figure #17: Bypass using Tapjacking-ExportedActivity open-source tool

Figure #15: bypassing using TapJacker tool -2 Figure #16: Searched for the displayed toast via static analysis
Following the overlay attack testing, SecureLayer7 conducted SecurelLayerT utilized another open-source Android To test the Tapjacking-ExportedActivity application, the
a static analysis by examining the decompiled APK source application named Tapjacking-ExportedActivity for further Securelayer7 team input specific identifiers: the package
code of the application with implemented protection. This testing. This application leverages SYSTEM_ALERT_WINDOW name "com.appdome.browserandroidoverlay" and the main
analysis aimed to locate the specific toast message triggered and TYPE_APPLICATION_OVERLAY permissions to create an activity name "com.appdome.browserandroidoverlay.
during the overlay protection mechanism. However, no overlay. MainActivity".

corresponding results were found in the code base.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 15

Appendix

In their continued analysis, SecurelLayer7 delved into the static
code of the application and identified a specific class,
s79af6adb.fe51a4e9a.fe51a4e9a, which appears to be linked
to the implementation of the Overlay protection.

TAPJACKING RUNNING!

Figure #18: Bypass using Tapjacking-ExportedActivity open-source tool Figure #19: Bypass using Tapjacking-ExportedActivity open-source tool

Upon executing the Tapjacking-ExportedActivity application,
it successfully created an overlay on the app equipped with
Appdome's protection. When interaction occurred with this
overlay screen, the protected application displayed a toast
message similar to previous observations and then proceeded
to close itself.

Figure #21: Located the code responsible for protection

In an effort to further understand the Overlay protection,
SecurelLayer7 developed a custom Frida script intended to
hook into specific functions and return a Boolean value,
thereby manipulating the app's runtime behavior. However,
they encountered a challenge as the function did not hook
properly. This issue was attributed to the obfuscation present
in the source code, which added a layer of complexity to the
analysis and thwarted the effectiveness of the script.

TAPJACKING RUNNING!

Figure #20: Bypass using Tapjacking-ExportedActivity open-source tool

Securelayer?7 | White Paper | Penetration Testing Technical Report | Page 16

Appendix

petomprond The final phase of SecureLayer7's analysis involved using an The application created an overlay to test these flags. It was
feS1adeSaClass ad36 . o open-source application named Android-overlay-detection, observed that tapping the partially obscured area of the
sy ey which utilizes SYSTEM_ALERT_WINDOW and HIDE_OVER- screen resulted in no response from the application. This was
LAY_WINDOWS. This was in response to the code analysis evidenced by the app not opening the keyboard when the ad-
finding that the app checks for the FLAG_WINDOW_IS_PAR- dress bar, located in the obscured area, was tapped.

TIALLY_OBSCURED.

Figure #22: Located the code responsible for protection

Figure #24: bypass using Android-overlay-detection open-source tool Figure #25: Bypass using Android-overlay-detection open-source tool
In the final testing phase with the Android-overlay-detection Additionally, when interacting with the overlay screen created
application, SecurelLayer7 focused on the FLAG_WIN- by Android-overlay-detection, the protected application dis-
DOW_IS_OBSCURED and FLAG_WINDOW_IS_PARTIALLY_OB- played a consistent toast message: Browser Android Overlay
SCURED flags. detected the use of Screen Overlay or similar tool. To protect

you the app will close.

Figure #23: Failed to attach and manipulate the output

Securelayer? | White Paper | Penetration Testing Technical Report | Page 17

Appendix

L I o b

T

Testing for
obscured view
tap

Figure #26: Bypass using Android-overlay-detection open-source tool

In the evaluation of Anti Remote Desktop Control (RDC)
protection, SecureLayer7 implemented various techniques
including code-level analysis and runtime manipulation. The
TeamViewer application, a tool for remote access and control,
was used for this assessment. When operated on an Android
device linked to a desktop, it was noted that launching an app
with Anti RDC protection triggered a warning toast message.
This indicated the app's capability to detect and respond to
unauthorized remote control attempts.

Securelayer? | White Paper | Penetration Testing Technical Report | Page 18

Dachboard Femote control Screensho

Figure #27: Utilized TeamViewer to check for the protection

After conducting the initial tests with TeamViewer,
SecurelLayer7 proceeded with a static analysis of the app's
decompiled source code. This analysis aimed to locate the
specific toast message triggered by the Anti Remote Desktop
Control protection. However, no corresponding results were
found within the code base, suggesting a sophisticated
implementation of the warning mechanism that was not
directly identifiable in the analyzed code.

Figure #28: Utilized TeamViewer to check for the protection

Upon further analysis of the application's source code, Secure-
Layer7 discovered that the app includes a check for the status
of Accessibility services. To explore this aspect, RustDesk3, an
open-source remote access and control software that utilizes
Accessibility services to establish remote connections, was
used. This approach aimed to test the application's response
to remote access attempts involving Accessibility services.

Appendix

atic boelean BASEE1ELf (L rrg i
thoeDridge BREIRPTEIRTEROREEE (51-),

Figure #29:Analyzed the code which checks for Accessibility service

SecureLayer7 further tested the 'Block Suspicious Accessibility
Services' protection by enabling it. It was observed that when
the application with the above-mentioned protection is
launched using remote access software such as RustDesk
which utilizes Accessibility services, the application displayed
a warning toast with the following "Browser Android w ally
detected malware using Accessibility Services not permitted
with this app. To protect you, the app will close". Thus,
rendering this attack vector useless when Block Suspicious
Accessibility Services' protection is enabled.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 19

addres: ¥ 04 2 8@ (X &b 85 =TT

CRAWL SETTINGS
SETTINGS

Figure #30: Failed to bypass the Block Suspicious Accessibility Services protection

In evaluating Appdome's Keylogging protection, SecureLayer7
employed a methodology incorporating code analysis,
observation of changes, and runtime manipulation. An
open-source keylogger, LokiBoard, was used to test this
protection. LokiBoard replaces the device's default keyboard
with a malicious one, recording keystrokes. When the
protected application was launched with LokiBoard active,
it detected the untrusted keyboard and displayed a warning
toast, advising the use of an approved or built-in keyboard,
thereby indicating the effectiveness of the keylogging
protection.

In their static analysis aimed at uncovering the code
responsible for keylogging protection, SecurelLayer7 searched
for the specific warning toast triggered by using a malicious
keyboard. However, this analysis of the decompiled source
code of the application with keylogging protection did not
yield any results for the specific toast message string,
suggesting a more complex or obfuscated implementation

of this security feature.

Custom code implemented

by Appdome

Figure #31: Failed to bypass the Block Suspicious Accessibility Services protection

Appendix

In further testing with the LokiBoard keylogger, SecureLayer7
observed that the application with keylogging protection did
not recognize or accept keystrokes from the third-party
keyboard. This was evident as no input was registered in the
address bar of the Browser Android application when
attempted with the malicious keyboard, showcasing the
effectiveness of the app's keylogging protection mechanism.

The static analysis was conducted by uploading the APK with
implemented memory protection to MobSF. The analysis
revealed that in all shared libraries, Stack Canary and RELRO
settings were enabled, with Full RELRO applied, indicating
robust memory protection measures in place.

SecurelLayer7's examination extended to the decompiled
source code for any hardcoded keys or secrets that might be
used for data encryption. Despite a thorough analysis, no such
elements were found, indicating an absence of easily
identifiable encryption mechanisms within the memory
protection framework.

Securelayer7 | White Paper | Penetration Testing Technical Report | Page 20

Figure #32: No encryption keys within the source code of the decompiled APK

SecurelLayer7 encountered challenges while attempting to
bypass emulator detection using the BrowserAndroid app.
The application, executed with protection mechanisms
enabled, displayed a blank screen on the Android emulator.
Efforts to circumvent this included employing tools like Frida
scripts and searching for Isposed/exposed modules, but these
were detected and neutralized by the application. Further
attempts using jd-gui and other deobfuscation tools to
analyze the source code were also hindered due to the
application's complex obfuscation techniques, complicating
the reverse engineering process.

Figure #33: Tested for Emulator bypass using Frida scripts

